0

Full Content is available to subscribers

Subscribe/Learn More  >

Micromechanical Modeling of Brittle Fracture of French RPV Steel: A Comprehensive Study of Stress Triaxiality Effect

[+] Author Affiliations
Jean-Philippe Mathieu

EDF R&D, Moret-sur-Loing, France

Olivier Diard

EDF-CNPE de Penly, Penly, France

Karim Inal

Ecole des Mines de Saint Etienne, Saint-Étienne, France

Sophie Berveiller

ENSAM CER de Metz, Metz, France

Paper No. PVP2008-61334, pp. 993-1002; 10 pages
doi:10.1115/PVP2008-61334
From:
  • ASME 2008 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication, Parts A and B
  • Chicago, Illinois, USA, July 27–31, 2008
  • Conference Sponsors: Pressure Vessels and Piping
  • ISBN: 978-0-7918-4829-6
  • Copyright © 2008 by ASME

abstract

The present study describes a multiscale representation of mechanisms involved in brittle fracture of a french Reactor Pressure Vessel (RPV) steel (16MND5 equ. ASTM A508 Cl.3) at low temperatures. Attention will be focused on the representation of stress heterogeneities inside the ferritic matrix during plastic straining, which is considered as critical for further micromechanical approach of brittle fracture. This representation is tuned on experimental results [1]. Modeling involves micromechanical a description of plastic glide, a mean field (MF) model and a realistic three-dimensional aggregates Finite Element (FE) simulation, all put together inside a multiscale approach. Calibration is done on macroscopic stress-strain curves at different low temperatures, and modeling reproduces experimental stress heterogeneities. This modeling allows to apply a local micromechanical fracture criterion of crystallographic cleavage for triaxial loadings on the Representative Volume Element (RVE). Deterministic computations of time to fracture for different carbide sizes random selection provide a probability of fracture for an Elementary Volume (EV) consistant with the local approach. Results are in good agreement with hypothesis made by local approach to fracture. Hence, the main difference is that no phenomenological dependence on loading or microstructure is supposed for probability of fracture on the EV: this dependence is naturally introduced by the micromechanical description.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In