0

Full Content is available to subscribers

Subscribe/Learn More  >

The Weibull Stress Model for Predicting Cleavage Fracture in the Ductile-to-Brittle Transition Region

[+] Author Affiliations
Xiaosheng Gao

University of Akron, Akron, OH

Jason P. Petti

Sandia National Laboratories, Albuquerque, NM

Robert H. Dodds, Jr.

University of Illinois - Urbana-Champaign, Urbana, IL

Paper No. PVP2008-61080, pp. 927-936; 10 pages
doi:10.1115/PVP2008-61080
From:
  • ASME 2008 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication, Parts A and B
  • Chicago, Illinois, USA, July 27–31, 2008
  • Conference Sponsors: Pressure Vessels and Piping
  • ISBN: 978-0-7918-4829-6
  • Copyright © 2008 by ASME

abstract

Transgranular cleavage fracture in the ductile-to-brittle transition region of ferritic steels often leads to spectacular and catastrophic failures of engineering structures. Due to the strongly stochastic effects of metallurgical scale inhomogenieties together with the nonlinear mechanical response from plastic deformation, the measured fracture toughness data exhibit a large degree of scatter and a strong dependence on constraint. This has stimulated an increasing amount of research over the past two decades, among which the Weibull stress model originally proposed by the Beremin group has gained much popularity. This model is based on weakest link statistics and provides a framework to quantify the relationship between macro and microscale driving forces for cleavage fracture. It has been successfully applied to predict constraint effects on cleavage fracture and on the scatter of macroscopic fracture toughness values. This paper provides a brief review of the research conducted by the authors in recent years to extend the engineering applicability of the Weibull stress model to predict cleavage fracture in ferritic steels. These recent efforts have introduced a threshold value in the Weibull stress model, introduced more robust calibration methods for determination of model parameters, predicted experimentally observed constraint effects, demonstrated temperature and loading rate effects on the model parameters, and expanded the original Beremin model to include the effects of microcrack nucleation.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In