0

Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Reynolds Number on Microfan Performance

[+] Author Affiliations
David Quin, Ronan Grimes, Ed Walsh, Mark Davies

University of Limerick, Limerick, Ireland

Stefan Kunz

Institut für Mikrotechnik Mainz GmbH, Mainz, Germany

Paper No. ICMM2004-2409, pp. 761-768; 8 pages
doi:10.1115/ICMM2004-2409
From:
  • ASME 2004 2nd International Conference on Microchannels and Minichannels
  • ASME 2nd International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, June 17–19, 2004
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4164-2
  • Copyright © 2004 by ASME

abstract

Miniaturisation of modern electronics means that future compact electronic systems are likely to be too hot to be held in the users hand. Simultaneous increases in heat dissipation will also require the development of novel compact cooling technologies. In systems such as mobile phones and palmtop computers, macro scale fans cannot be used to overcome this problem, as they are too large. As a solution, the implementation of micro fan technology is proposed. Previous investigators have shown that reduction of the Reynolds number of turbomachinery results in reduced efficiency. To experimentally investigate this predicted phenomenon, a series of geometrically similar axial flow fans have been fabricated. These range in size from the macro to the micro scale with the Reynolds numbers varying linearly with fan dimensions. Through detailed Particle Image Velocimetry (PIV) measurements and pressure flow characterization of these fans, this investigation aims to quantify the reduction in efficiency, which occurs as the Reynolds number is reduced. This paper concludes that the extent to which fan efficiency is reduced by Reynolds number is in surprisingly good agreement with relatively simple predictions developed by the authors in previous investigations. Reduced Reynolds number was also seen to alter the velocity distribution at the fan outlet. This is an important point as it indicates a change in the physics of the flow with reducing scale.

Copyright © 2004 by ASME
Topics: Reynolds number

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In