0

Full Content is available to subscribers

Subscribe/Learn More  >

Displacement Controlled Stress Intensity Factor Solutions for Structural Integrity Assessments of Welding Residual Stress Distributions

[+] Author Affiliations
Adam Toft, David Beardsmore, Colin Madew, Huego Teng

Serco Technical and Assurance Services, Warrington, UK

Mark Jackson

Rolls-Royce plc, Derby, UK

Paper No. PVP2008-61211, pp. 687-696; 10 pages
doi:10.1115/PVP2008-61211
From:
  • ASME 2008 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication, Parts A and B
  • Chicago, Illinois, USA, July 27–31, 2008
  • Conference Sponsors: Pressure Vessels and Piping
  • ISBN: 978-0-7918-4829-6
  • Copyright © 2008 by British Crown

abstract

Within the UK nuclear industry the assessment of fracture in pressurised components is often carried out using procedures to calculate the margin of safety between a lower-bound fracture toughness and the crack driving force. Determination of the crack driving force usually requires the calculation of elastic stress intensity factor solutions for primary loads and secondary loads arising from weld residual stresses and/or thermal stresses. Within established UK assessment procedures weight function solutions are available which allow the stress intensity factors to be calculated from the through-wall opening-mode stress distribution in an uncracked component. These weight-function solutions are generally based on models where either no boundary condition is applied, or where one is applied at a distance either side of the crack plane that is very long compared with the crack size and wall thickness. Such solutions do not take into account any reduction in the stress field that might occur as the distance from the crack faces increases. Weld residual stress fields may often be expected to reduce in this manner. A separate, earlier study has shown that the stress intensity factor for a cracked plate loaded in displacement control decreases substantially as the loading plane is moved closer to the crack plane. It would therefore be expected that a similar reduction in stress intensity factor would be obtained for a residual stress analysis when displacement boundary conditions are imposed at a distance relatively close to the crack plane. This paper describes an investigation of the differences, particularly in terms of a reduction in calculated stress intensity factor, which may arise from application of displacement controlled stress intensity factor solutions, as compared with load controlled solutions, when considering weld residual stresses. Consideration is also given as to how new displacement controlled stress intensity factor solutions could be developed by modification of existing load controlled solutions.

Copyright © 2008 by British Crown

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In