0

Full Content is available to subscribers

Subscribe/Learn More  >

A Parametric Study on the Whistling of Multiple Side Branch System as a Model for Corrugated Pipes

[+] Author Affiliations
Gunes Nakiboglu, Devis Tonon, Johannes F. H. Willems, Avraham Hirschberg

Technische Universiteit Eindhoven, Eindhoven, The Netherlands

Stefan P. C. Belfroid

TNO Science and Industry, Delft, The Netherlands

Paper No. PVP2009-77754, pp. 389-398; 10 pages
doi:10.1115/PVP2009-77754
From:
  • ASME 2009 Pressure Vessels and Piping Conference
  • Volume 4: Fluid-Structure Interaction
  • Prague, Czech Republic, July 26–30, 2009
  • Conference Sponsors: Pressure Vessels and Piping
  • ISBN: 978-0-7918-4367-3 | eISBN: 978-0-7918-3854-9
  • Copyright © 2009 by ASME

abstract

Corrugated pipes are widely used in industry due to their inherent character of being globally flexible and locally rigid. Under certain conditions flow through the corrugated pipes causes severe noise and vibration problems. Thus, to understand the phenomenon and parameters that play role is a real asset for industry. This study is a continuation of a research based on multiple side branch system and presented together with results of an investigation performed on corrugated pipes. Many similarities between the corrugated pipes and multiple side branch system have been observed. A Strouhal number which uses as characteristic length the cavity width plus the upstream edge radius yields the best collapse of the data for both corrugated pipes and multiple side branch system. For both systems the upstream edge radius of the cavity has significant effect on pressure fluctuation amplitudes. It can increase the amplitude of the pressure fluctuation by an order of magnitude compared to sharp edges. The radius of the downstream edge has a less pronounced effect on the sound production. Strouhal numbers display two hydrodynamic modes the first with a Strouhal number around 0.1 and the second one varying in the range between 0.4 and 0.6. The variation in critical Strouhal number for the second hydrodynamic mode correlates with the relative corrugation volume compared to the pipe volume. Experiments with corrugated pipes reveal that 1st hydrodynamic mode is limited to configuration with small relative corrugation volume. The first hydrodynamic mode was not yet observed in the multiple side-branch systems.

Copyright © 2009 by ASME
Topics: Pipes , Bifurcation

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In