Full Content is available to subscribers

Subscribe/Learn More  >

Weld-Overlay Analyses: An Investigation of the Effect of Weld Sequencing

[+] Author Affiliations
T. Zhang, G. Wilkowski, D. Rudland, F. Brust

Engineering Mechanics Corporation of Columbus, Columbus, OH

H. S. Mehta, D. V. Sommerville

GE Hitachi Nuclear Energy, Sunol, CA

Y. Chen

Center for Reliable Energy Systems, Dublin, OH

Paper No. PVP2008-61560, pp. 565-574; 10 pages
  • ASME 2008 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication, Parts A and B
  • Chicago, Illinois, USA, July 27–31, 2008
  • Conference Sponsors: Pressure Vessels and Piping
  • ISBN: 978-0-7918-4829-6
  • Copyright © 2008 by ASME


The weld overlay process has been developed and applied to repair of nuclear reactor pipe girth welds for many years in BWR plants. The objectives of such repairs were to induce compressive axial residual stresses on the pipe inside surface, as well as increase the pipe thickness with a weld material that is not susceptible to stress-corrosion cracking. Hence, understanding the residual stress distribution is important to evaluate the reliability of pipe joints with weld overlay repairs. In this paper, a six-inch diameter Schedule 120 stainless steel pipe with an overlay thickness of 7.87 mm (0.31 inch) was picked as a validation case. Weld sequencing effects were thoroughly studied. The residual stresses were calculated by using thermal elasto-plastic finite-element analysis (FEA). After comparing results using different weld sequences, it was found that the calculated weld residual stresses on ID surface were very sensitive to weld sequencing in FE analyses as well as internal cooling rate. The influence of the weld sequencing was relatively secondary to the pipe distortion. An optimum (producing compressive residual stress on the ID surface) weld sequencing was obtained and applied to a 711.2 mm (28-inch) diameter pipe-to-elbow girth weld with an overlay thickness of 24.9 mm (0.98 inch) and a pipe thickness of 29.5 mm (1.16 inch).

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In