0

Full Content is available to subscribers

Subscribe/Learn More  >

Welding Residual Stress Analysis Using Axisymmetric Modeling for Shroud Support Structure

[+] Author Affiliations
Kazuo Ogawa

Japan Nuclear Energy Safety Organization (JNES), Tokyo, Japan

Yukihiko Okuda, Toshiyuki Saito, Takahiro Hayashi, Rie Sumiya

Toshiba Corporation, Kanagawa, Japan

Paper No. PVP2008-61148, pp. 289-297; 9 pages
doi:10.1115/PVP2008-61148
From:
  • ASME 2008 Pressure Vessels and Piping Conference
  • Volume 6: Materials and Fabrication, Parts A and B
  • Chicago, Illinois, USA, July 27–31, 2008
  • Conference Sponsors: Pressure Vessels and Piping
  • ISBN: 978-0-7918-4829-6
  • Copyright © 2008 by ASME

abstract

Recently, several cracks caused by stress corrosion cracking (SCC) have been found on welds of shroud supports in Boiling Water Reactor (BWR) plants. The major cause of SCC in a weld joint is considered due to welding residual stress generated in the fabrication processes of the components. For continuous safety operations, it is necessary to estimate the structural integrity of such shroud supports with cracks based on the distribution of residual stresses induced by welding. In order to know and to validate the numerical method of residual stresses induced by welding of large scale and complex shaped components, a BWR shroud support mock-up with a hemispherical base of reactor pressure vessel (RPV) was fabricated by Japan Nuclear Energy Safety Organization (JNES) as a national project. The mock-up has a 32° section of actual BWR shroud supports with approximately the same configurations, materials and welding conditions of an actual component. During welding in the fabrication process of the mock-up, temperature was measured and after completion of the mock-up fabrication, surface residual stress distributions for each weld were also measured by the sectioning method. In addition, through-thickness residual stress distributions were investigated. Residual stress for each weld was calculated by using axisymmetric models considering temperature dependent elastic-plastic material properties. Though the actual structure of shroud supports is essentially complex, we simplified axisymmetric models in the center of the cross section. The analysis results show a similar profile and good agreement with the measured results on the surface of all the welds and through the welds at the upper and lower joints of the shroud support leg.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In