0

Full Content is available to subscribers

Subscribe/Learn More  >

Flow Boiling in Minichannels of Copper, Brass, and Aluminum Round Tubes

[+] Author Affiliations
K. H. Bang, W. H. Choo

Korea Maritime University, Yeongdogu, Busan, Korea

Paper No. ICMM2004-2381, pp. 559-564; 6 pages
doi:10.1115/ICMM2004-2381
From:
  • ASME 2004 2nd International Conference on Microchannels and Minichannels
  • ASME 2nd International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, June 17–19, 2004
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4164-2
  • Copyright © 2004 by ASME

abstract

The past work on flow boiling heat transfer in minichannels ranging one to three millimeters of hydraulic diameter has indicated that the local heat transfer coefficients are largely independent of mass flux and vapor quality, but mainly a function of wall heat flux. The present work is a revisit of flow boiling in minichannels by conducting experiment using 1.67 mm inner diameter tubes of three different materials; aluminum, brass, and copper, to investigate an effect of the tube inner surface conditions with the focus on an effect on nucleate boiling. Tests were conducted for R-22, a fixed mass flux of 600 kg/m2 s, 5∼30 kW/m2 of wall heat flux, 0.0∼0.9 of local vapor quality. The present experimental data confirmed that the flow boiling heat transfer coefficient in a minichannel varies only by heat flux, independent of mass flux and vapor quality. The effect of tube material was found small for the tubes used in the present work. The present data were well predicted by the correlation proposed by Tran et al. (1996).

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In