0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling and Design of Micro Groove Falling Film Evaporators

[+] Author Affiliations
Shohei Hasebe, Naoki Shikazono, Nobuhide Kasagi

University of Tokyo, Tokyo, Japan

Paper No. ICMM2004-2368, pp. 453-460; 8 pages
doi:10.1115/ICMM2004-2368
From:
  • ASME 2004 2nd International Conference on Microchannels and Minichannels
  • ASME 2nd International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, June 17–19, 2004
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4164-2
  • Copyright © 2004 by ASME

abstract

In the present study, heat transfer in a falling film micro groove evaporator has been simulated by an analytical model. The flow and thermal fields were divided in two regions, i.e. macroscopic flow inside the groove and the microscopic flow where intensive evaporation takes place at the thin film interline region. For the micro region model, pressure in the liquid film was expressed as a sum of surface tension and disjoining pressure effects. The film thickness profile was obtained by solving the 4th order differential equation by Runge-Kutta method. Then, this micro region model was combined with the macro region model. Macro region model solves one dimensional bulk flow inside the groove with gravitational effect taken into account. Constant curvature of the liquid vapor surface was assumed for the macro flow. It is shown that the gravitational force is essential for providing the liquid to wide range of heat transfer area. Thus, diverging branch evaporator is investigated. It is demonstrated that this concept has large potentiality for improving the performance of the micro groove falling film evaporator.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In