0

Full Content is available to subscribers

Subscribe/Learn More  >

Analyses of Liquid Flow in Micro-Conduits

[+] Author Affiliations
Junemo Koo, Clement Kleinstreuer

North Carolina State University, Raleigh, NC

Paper No. ICMM2004-2334, pp. 191-198; 8 pages
doi:10.1115/ICMM2004-2334
From:
  • ASME 2004 2nd International Conference on Microchannels and Minichannels
  • ASME 2nd International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, June 17–19, 2004
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4164-2
  • Copyright © 2004 by ASME

abstract

Experimental observations of liquid microchannel flow are reviewed and results of computer experiments concerning channel entrance, wall slip, non-Newtonian fluid, surface roughness, viscous dissipation and flow instability effects on the friction factor are discussed Specifically, based on numerical friction factor analyses, the entrance effect should be taken into account for any microfluidic system. It is a function of channel length, aspect ratio and the Reynolds number. Non-Newtonian fluid flow effects are expected to be important for polymeric liquids and dense particle suspension flows. The wall-slip effect is negligible for liquid flows. For relatively low Reynolds numbers, i.e., Re > 1,200, onset to instabilities may have to be considered because of possible geometric non-uniformities, including a contraction and/or bend at the microchannel inlet as well as substantial surface roughness. Significant roughness effects, described with a new porous medium layer (PML) model, are a function of the Darcy number, the Reynolds number and cross-sectional configurations. This model was applied to micro-scale liquid flows in straight channels, tubes and rotating cylinders, and validated with experimental data sets. In contrast to published models, PML model simulations yield both an increase and decrease of the friction factor depending on the Darcy number. Viscous dissipation in microchannels is a strong function of the channel aspect ratio, Reynolds number, Eckert number, Prandtl number, and conduit hydraulic diameter. Specifically, viscous dissipation effects are quite important for fluids with low specific heat capacities and high viscosities, even for very low Reynolds numbers, i.e., ReD < 1. The viscous dissipation effect was found to decrease as the fluid temperature increases. As the aspect ratio deviates from unity, the viscous dissipation effect increases. It was found that ignoring the viscous dissipation effect could ultimately affect friction factor measurements for flows in micro-conduits. This could imply a significant amount of viscous heat generation and, for example, may diminish a projected micro-heat-exchanger performance.

Copyright © 2004 by ASME
Topics: Flow (Dynamics)

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In