Full Content is available to subscribers

Subscribe/Learn More  >

An Inverse Design Based Methodology for Rapid 3D Multi-Objective/Multidisciplinary Optimization of Axial Turbines

[+] Author Affiliations
Pietro Boselli, Mehrdad Zangeneh

University College London, London, UK

Paper No. GT2011-46729, pp. 1459-1468; 10 pages
  • ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
  • Volume 7: Turbomachinery, Parts A, B, and C
  • Vancouver, British Columbia, Canada, June 6–10, 2011
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5467-9
  • Copyright © 2011 by ASME


Design of axial turbines, especially LP turbines, poses difficult tradeoffs between requirements of aerodynamic design and structural limitations. In this paper, a methodology is proposed for 3D multi-objective design of axial turbine blades in which a 3D inverse design method is coupled with a multi-objective genetic algorithm. By parameterizing the blade using blade loading parameters, spanwise work distribution and maximum thickness, a large part of the design space can be explored with very few design parameters. Furthermore, the inverse method not only computes the blade shape but also provides accurate 3D inviscid flow information. In the simple multi-disciplinary approach proposed here the different losses in axial turbines such as endwall losses, tip leakage losses and an indication of flow separation are related through well known correlations to the blade surface velocities predicted by the inverse design method. In addition, geometrical features such as throat area, lean angles and airfoil cross sectional area are computed from the blade shape employed during the optimization. Also, centrifugal stresses and bending stresses are related to the blade geometry. The methodology is then applied to the redesign of an LP turbine rotor with the aim of reducing the maximum stresses while maintaining the performance of the rotor. The results are confirmed by using the commercial CFX CFD (Computational Fluid Dynamics) code and Ansys FEA (Finite Element Analysis) codes.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In