0

Full Content is available to subscribers

Subscribe/Learn More  >

Transition Modelling for Vortex Generating Jets on Low-Pressure Turbine Profiles

[+] Author Affiliations
Florian Herbst, Joerg R. Seume

Leibniz University Hannover, Hannover, Germany

Dragan Kožulović

Technische Universität Braunschweig, Braunschweig, Germany

Paper No. GT2011-45621, pp. 1197-1208; 12 pages
doi:10.1115/GT2011-45621
From:
  • ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
  • Volume 7: Turbomachinery, Parts A, B, and C
  • Vancouver, British Columbia, Canada, June 6–10, 2011
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5467-9
  • Copyright © 2011 by ASME

abstract

Steady blowing vortex generating jets (VGJ) on highly-loaded low-pressure turbine profiles have shown to be a promising way to decrease total pressure losses at low Reynolds-numbers by reducing laminar separation. In the present paper, the state of the art turbomachinery design code TRACE with RANS turbulence closure and coupled γ-ReΘ transition model is applied to the prediction of typical aerodynamic design parameters of various VGJ configurations in steady simulations. High-speed cascade wind tunnel experiments for a wide range of Reynolds-numbers, two VGJ positions, and three jet blowing ratios are used for validation. Since the original transition model overpredicts separation and losses at Re2 is ≤ 100 ·103 an extra mode for VGJ induced transition is introduced. Whereas the criterion for transition is modelled by a filtered Q vortex criterion the transition development itself is modelled by a reduction of the local transition-onset momentum-thickness Reynolds number. The new model significantly improves the quality of the computational results by capturing the corresponding local transition process in a physically reasonable way. This is shown to yield an improved quantitative prediction of surface pressure distributions and total pressure losses.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In