0

Full Content is available to subscribers

Subscribe/Learn More  >

A Unified Simple Predictive Model for High Fluence Ultra-Short Pulsed Laser Ablation of Metal, Semiconductor and Dielectric

[+] Author Affiliations
Benxin Wu

Illinois Institute of Technology, Chicago, IL

Yung C. Shin

Purdue University, West Lafayette, IN

Paper No. MSEC2009-84317, pp. 853-859; 7 pages
doi:10.1115/MSEC2009-84317
From:
  • ASME 2009 International Manufacturing Science and Engineering Conference
  • ASME 2009 International Manufacturing Science and Engineering Conference, Volume 1
  • West Lafayette, Indiana, USA, October 4–7, 2009
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4361-1 | eISBN: 978-0-7918-3859-4
  • Copyright © 2009 by ASME

abstract

A unified simple predictive model has been presented for high fluence ultrashort laser ablation of metal, semiconductor and dielectric, which has very low computational cost and is very easy to apply. Unlike many other simplified models, this model does not involve any free adjustable variables. The model predictions agree well with experimental measurements for femtosecond laser ablation, while the model is not very applicable for pulse durations more than ∼10 picosecond.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In