Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Chip Seizure on Steady State Motion of a Machine-Tool

[+] Author Affiliations
Brandon C. Gegg, Steve S. Suh

Texas A&M University, College Station, TX

Paper No. MSEC2009-84280, pp. 437-444; 8 pages
  • ASME 2009 International Manufacturing Science and Engineering Conference
  • ASME 2009 International Manufacturing Science and Engineering Conference, Volume 1
  • West Lafayette, Indiana, USA, October 4–7, 2009
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4361-1 | eISBN: 978-0-7918-3859-4
  • Copyright © 2009 by ASME


The steady state motion of a machine-tool is numerically predicted with interaction of the chip/tool friction boundary. The chip/tool friction boundary is modeled via a discontinuous systems theory in effort to validate the passage of motion through such a boundary. The mechanical analogy of the machine-tool is shown and the continuous systems of such a model are governed by a linear two degree of freedom set of differential equations. The domains describing the span of the continuous systems are defined such that the discontinuous systems theory can be applied to this machine-tool analogy. Specifically, the numerical prediction of eccentricity amplitude and frequency attribute the chip seizure motion to the onset or route to unstable interrupted cutting.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In