0

Full Content is available to subscribers

Subscribe/Learn More  >

A Volume-of-Fluid Based Numerical Simulation of Solidification in Binary Alloys on Fixed Non-Uniform Co-Located Grids

[+] Author Affiliations
Mehdi Farrokhnejad, Anthony G. Straatman, Jeffrey T. Wood

University of Western Ontario, London, ON, Canada

Paper No. MSEC2009-84239, pp. 427-436; 10 pages
doi:10.1115/MSEC2009-84239
From:
  • ASME 2009 International Manufacturing Science and Engineering Conference
  • ASME 2009 International Manufacturing Science and Engineering Conference, Volume 1
  • West Lafayette, Indiana, USA, October 4–7, 2009
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4361-1 | eISBN: 978-0-7918-3859-4
  • Copyright © 2009 by ASME

abstract

In this paper, the authors present a platform for the modeling of mold filling and solidification of binary alloys with properties similar to Mg alloys. A volume-of-fluid (VOF) based method is used to capture the interface between solid and liquid in binary alloys solidification process on a fixed non-uniform grid, developed for implementation in a colocated finite volume framework. Contrary to other works, to update the volume fraction (of fluid) in the field, a link between source-based type of energy equation and VOF reconstruction algorithm is described and implemented. A new approximation to the pressure gradient is presented to remove all ‘Spurious Currents’ [1] resulting from pressure jumps in the vicinity of the interface. Based upon the work presented, it is concluded that the present combination of the equations are not only computationally straightforward to implement and upgrade to a 3D problem, but also provides an excellent platform to capture the interface between constituents in a die-casting process including solidification and mold filling process. The current framework will be used in future works to characterize the local mechanical properties of Mg alloys by using information from simulation at the dendritic level.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In