Full Content is available to subscribers

Subscribe/Learn More  >

Modal Analysis of the Ice-Structure Interaction Problem

[+] Author Affiliations
Michael A. Venturella

US Coast Guard; Virginia Polytechnic Institute and State University, Blacksburg, VA

Mayuresh J. Patil, Leigh S. McCue

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. OMAE2008-57099, pp. 901-910; 10 pages
  • ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering
  • Volume 3: Pipeline and Riser Technology; Ocean Space Utilization
  • Estoril, Portugal, June 15–20, 2008
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-4820-3 | eISBN: 0-7918-3821-8


In this paper the authors build upon the single degree of freedom ice-structure interaction model initially proposed by Matlock, et al. (1969, 1971). The model created by Matlock, et al. (1969, 1971), assumed that the primary response of the structure would be in its fundamental mode of vibration. Modal analysis is used in this study, in which the response of each mode is superposed to find the complete modal response of the entire length of a pier subject to incremental ice loading. In Matlock, et al., the physical system is a bottom supported pier modeled as a cantilever beam. Realistic conditions such as ice accumulation on the pier modeled as a point mass and uncertainties in the ice characteristics are introduced in order to provide a stochastic response. The impact of number of modes in modeling is studied as well as dynamics due to fluctuations of ice impact height as a result of typical tidal fluctuations. A Poincaré based analysis following on the research of Karr, et al. (1992) is employed to identify and periodic behavior of the system response. The intention of this work is to provide a foundation for future work coupling multiple piers and connecting structure for a comprehensive ice-wind-structural dynamics model.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In