0

Full Content is available to subscribers

Subscribe/Learn More  >

Environmental Sustainability of Laser-Based Manufacturing: Case Studies on Laser Shock Peening and Laser Assisted Turning

[+] Author Affiliations
Fu Zhao, Gautam Naik

Purdue University, West Lafayette, IN

Li Zhang

Liaoning Petroleum-Chemical Industry Planning & Designing Institute, Shenyang, Liaoning, China

Paper No. MSEC2009-84206, pp. 97-105; 9 pages
doi:10.1115/MSEC2009-84206
From:
  • ASME 2009 International Manufacturing Science and Engineering Conference
  • ASME 2009 International Manufacturing Science and Engineering Conference, Volume 1
  • West Lafayette, Indiana, USA, October 4–7, 2009
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4361-1 | eISBN: 978-0-7918-3859-4
  • Copyright © 2009 by ASME

abstract

Laser assisted manufacturing (LAM) processes, when compared with traditional manufacturing processes, have the potential to reduce cost, increase surface finish, extend part/tool life, and expand the range of manufacturable materials. However, very limited research has been done to evaluate the environmental performance of laser assisted processes and it is generally not clear how LAM processes compare with traditional methods. This paper conducts case studies on two representative laser based processes, i.e. laser shock peening of 7065 T7351 Aluminum and laser assisted turning of compacted graphite iron. Life cycle assessment is used to benchmark the environmental performance of these two processes to conventional processes, i.e. shot peening and dry turning, respectively. The life cycle inventory of both the laser based processes and conventional processes are developed using SimaPro v7.1 and Ecoinvent 2.0 and life cycle impact assessment is performed using US EPA TRACI. It is found that environmental performance of laser based processes varies significantly from process to process due to materials and energy consumption. Laser shock peening of aluminum has much better performance when over all environmental impact categories considered. Contribution analysis indicates that this is mainly due to the fact that laser shock peening does not need shot medium and at the same time significantly extends fatigue life of the workpiece. However, due to high electricity consumption and use of absorptive paint, laser assisted turning of compacted graphite iron has much higher environmental impacts than traditional dry turning, even after extending the tool life significantly.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In