Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer in Turbine Hub Cavities Adjacent to the Main Gas Path Including FE-CFD Coupled Thermal Analysis

[+] Author Affiliations
Antonio Guijarro Valencia, Jeffrey A. Dixon, Attilio Guardini

Rolls-Royce plc, Derby, UK

Daniel D. Coren, Daniel Eastwood

University of Sussex, Brighton, UK

Paper No. GT2011-45695, pp. 833-843; 11 pages
  • ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
  • Volume 5: Heat Transfer, Parts A and B
  • Vancouver, British Columbia, Canada, June 6–10, 2011
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5465-5
  • Copyright © 2011 by Rolls-Royce plc


Reliable means of predicting heat transfer in cavities adjacent to the main gas path are increasingly being sought by engineers involved in the design of gas turbines. In this paper an up-dated analysis of the interim results from an extended research programme, MAGPI, sponsored by the EU and several leading gas turbine manufactures and universities, will be presented. Extensive use is made of CFD and FE modelling techniques to understand the thermo-mechanical behaviour and convective heat transfer of a turbine stator well cavity, including the interaction of cooling air supply with the main annulus gas. It is also important to establish the hot running seal clearances for a full understanding of the cooling flow distribution and heat transfer in the cavity. The objective of the study has been to provide a means of optimising the design of such cavities (see Figure 1) for maintaining a safe environment for critical parts, such as disc rims and blade fixings, whilst maximising the turbine efficiency by means of reducing the fuel burn and emissions penalties associated with the secondary airflow system. The modelling methods employed have been validated against data gathered from a dedicated two-stage turbine rig, running at engine representative conditions. Extensive measurements are available for a range of flow conditions and alternative cooling arrangements. The analysis method has been used to inform a design change which will be tested in a second test phase. Data from this test will also be used to further benchmark the analysis method. Comparisons are provided between the predictions and measurements from the original configuration, turbine stator well component temperature survey, including the use of a coupled analysis technique between FE and CFD solutions.

Copyright © 2011 by Rolls-Royce plc



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In