0

Full Content is available to subscribers

Subscribe/Learn More  >

Damage Accumulation and Life-Prediction Models for SnAgCu Leadfree Electronics Under Shock-Impact

[+] Author Affiliations
Pradeep Lall, Sandeep Shantaram, Arjun Angral, Mandar Kulkarni, Jeff Suhling

Auburn University, Auburn, AL

Paper No. InterPACK2009-89307, pp. 887-901; 15 pages
doi:10.1115/InterPACK2009-89307
From:
  • ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability
  • ASME 2009 InterPACK Conference, Volume 1
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-4359-8 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

Relative damage-index based on the leadfree interconnect transient strain history from digital image correlation, explicit finite-elements, cohesive-zone elements, and component’s survivability envelope has been developed for life-prediction of two-leadfree electronic alloy systems. Life prediction of pristine and thermally-aged assemblies, have been investigated. Solder alloy system studied include Sn1Ag0.5Cu, and 96.5Sn3.5Ag. Transient strains during the shock-impact have been measured using digital image correlation in conjunction with high-speed cameras operating at 50,000 fps. Both the board strains and the package strains have been measured in a variety of drop orientations including JEDEC horizontal drop orientation, vertical drop orientation and intermediate drop orientations. In addition the effect of sequential stresses of thermal aging and shock-impact on the failure mechanisms has also been studied. The thermal aging condition used for the study includes 125°C for 100 hrs. The presented methodology addresses the need for life prediction of new lead-free alloy-systems under shock and vibration, which is largely beyond the state of art. Three failure modes have been predicted including interfacial failure at the copper-solder interface, solder-PCB interface, and the solder joint failure. Explicit non-linear finite element models with cohesive-zone elements have been developed and correlated with experimental results. Velocity data from digital image correlation has been used to drive the attachment degrees of freedom of the submodel and extract transient interconnect strain histories. Explicit finite-element sub-modeling has been correlated with the full-field strain in various locations, orientations, on both the package and the board-side. The survivability of the leadfree interconnections under sequential loading (thermal aging and shock-impact) from simulation has been compared with pristine circuit assemblies subjected to shock-impact. Sequential loading changes the failure modes and decreases the drop reliability as compared to the room temperature experimental results. Damage index based survivability envelope is intended for component integration to ensure reliability in harsh environments.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In