0

Full Content is available to subscribers

Subscribe/Learn More  >

Fracture Life Evaluation of Cu-Cored Solder Joint in BGA Package

[+] Author Affiliations
Hisashi Tanie

Hitachi, Ltd., Hitachinaka, Ibaraki, Japan

Nobuhiko Chiwata, Motoki Wakano

Hitachi Metals, Ltd., Yasugi, Shimane, Japan

Masaru Fujiyoshi

HItachi Metals, Ltd., Yasugi, Shimane, Japan

Takeyuki Itabashi

Hitachi, Ltd., Kanagawa, Japan

Paper No. InterPACK2009-89232, pp. 797-802; 6 pages
doi:10.1115/InterPACK2009-89232
From:
  • ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability
  • ASME 2009 InterPACK Conference, Volume 1
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-4359-8 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

A Cu-cored solder joint has an accurate height, a low thermal resistance, and a low electric resistance. However, the fracture mechanism of Cu-cored solder joints has yet to be clarified, and thus the fracture life cannot be predicted. We evaluated the fracture life of Cu-cored solder joints by using our molten-solder-shape analysis and crack-propagation analysis methods. Our molten-solder-shape analysis is based on the moving-particle semi-implicit (MPS) method. In the MPS method, a continuum is expressed as an assembly of particles. In contrast to finite element analysis (FEA), the MPS method can easily express a large deformation and any geometric topology changes, because the continuum does not need to be divided into elements. Using our molten-solder-shape analysis, we could calculate the shapes of Cu-cored solder after the reflow process. Our crack-propagation analysis has a feature where a crack initiation point and the crack propagation paths are automatically calculated and where the fracture life is quantitatively evaluated using FEA. Using our crack-propagation analysis, we could analyze the fracture mechanism of Cu-cored solder joints. By combining our molten-solder-shape and crack-propagation analyses, we could evaluate the fracture life of Cu-cored solder joints in a ball grid array package. As a result, we found that the fracture life of Cu-cored solder joints is longer than that of conventional joints. The height of a joint is one of the reasons for the improved fracture life. Since the height of a Cu-cored solder joint is controlled by the size of the core ball, the height is larger and more highly accurate than that in conventional joints. Accordingly, the solder strain and strain variation are decreased. Joint stiffness is the second reason for the improved fracture life. Cu is harder than solder, so the joint stiffness of a Cu-cored joint is greater than that of conventional joints. Accordingly, the displacement of a joint is decreased. The crack-propagation behavior is the third reason for the improved fracture life. In a conventional solder joint, a solder crack only propagates near the interface of the solder and the land. In a Cu-cored solder joint, a solder crack not only propagates near the interface of the solder and the land, but also at the interface of the solder and core ball. The crack-propagation life is longer than that in a conventional joint due to crack-path scattering. We found that the fracture life of Cu-cored solder joints is improved by using these mechanisms.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In