0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance Study of a GaAs Based Laser Diode Chip in a Condensing Environment

[+] Author Affiliations
Sushma Madduri, Bahgat G. Sammakia, William Infantolino

State University of New York at Binghamton, Binghamton, NY

Satish C. Chaparala, Lawrence C. Hughes, J. Micheal Harris

Corning Incorporated, Corning, NY

Paper No. InterPACK2009-89115, pp. 665-671; 7 pages
doi:10.1115/InterPACK2009-89115
From:
  • ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability
  • ASME 2009 InterPACK Conference, Volume 1
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-4359-8 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

This paper presents a performance study done on semiconductor laser diodes in a moisture condensing environment. Devices with laser diodes are used in a wide variety of electronic applications and in various climatic conditions. The motivation behind this study is a common environmental exposure, where a device using a laser diode is brought into a relatively humid environment (a building) from a cold, outside environment. Under such conditions, condensation occurs on various components of the device, including the diode, and could affect the laser output power. Reliability of the device is a critical concern since the laser diode and the lens are susceptible to failure due to such repetitive condensation conditions. The test vehicle chosen for this study was a 980nm laser diode. These are used in products for a broad range of markets, including data communications, aerospace, material processing, scientific and defense industries [1–3]. These products may be used in environmental conditions that could result in condensation within the product. A hermetic package could address this concern, but it is an expensive option. Nonhermetic packaging for the laser component could help lower the cost of these devices; however reliability is a potential concern. Prior research on laser diodes consists of various reliability measurements on 980nm lasers using stress tests (e.g. accelerated aging tests; thermal cycling tests) [3–6]. Reliability analysis of laser diodes specifically addressing condensation measurements has not been previously reported. A Military Standard Specification [MIL-STD-883E Method 1004.7] titled, ‘Moisture resistance test’ was used to conduct this reliability study [10]. An experimental setup was designed and fabricated. A photonic package with a 980nm laser diode was subjected to repetitive condensing cycles and laser output power was recorded as a function of time, temperature and humidity. The variation in laser output power due to condensation was observed and quantified. The focus of this paper is on performance degradation of the laser diode. The possible mechanisms for this degradation are currently being investigated.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In