0

Full Content is available to subscribers

Subscribe/Learn More  >

Enhanced Static-Dynamic Pressure Transducer for the Detection of Acoustic Level Flow Instabilities in Gas Turbine Engines

[+] Author Affiliations
Adam M. Hurst, Scott Goodman, Boaz Kochman, Alex Ned

Kulite Semiconductor Products, Inc., Leonia, NJ

Paper No. GT2011-45750, pp. 215-220; 6 pages
doi:10.1115/GT2011-45750
From:
  • ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
  • Volume 3: Controls, Diagnostics and Instrumentation; Education; Electric Power; Microturbines and Small Turbomachinery; Solar Brayton and Rankine Cycle
  • Vancouver, British Columbia, Canada, June 6–10, 2011
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5463-1
  • Copyright © 2011 by ASME

abstract

The push to advance the performance and longevity of gas turbine engines requires better characterization of flow instabilities within the compressor and most importantly the combustor. Detecting the earliest onset of these flow instabilities can help engineers either manipulate the flow to restabilize it or make informed design changes to the engine. The pressures within gas turbine engines are typically composed of an undesired, low-level oscillatory pressure of less than 1kPa to several kPa superimposed on top of a large, relatively constant pressure of several thousand kPa [1–7]. The high-pressure transducers used to measure the pressures within these environments are often unable to resolve these low-level oscillatory pressures that characterize the flow instabilities because the signal output for such pressures is often the same level as the noise within the sensor-data acquisition system. This paper presents an engine test ready, high temperature, combined static and dynamic pressure transducer that uses static pressure compensation in order to measure these low-level dynamic pressures with an excellent signal to noise ratio and, at the same time, captures the overall static pressure within a gas turbine [8–10]. Test bench experiments demonstrate the static-dynamic transducer’s unique ability to capture both large static or quasi-static pressures of 1,380kPa or greater and simultaneously measure the acoustic-level dynamic pressures superimposed on top of these pressures. The static-dynamic transducer achieves this advanced sensitivity through the use of a low-pass acoustic filter that passes the large static pressure to the reference port of a high sensitivity dynamic pressure sensor within the transducer such that the overall static pressures cancel out and the sensor measures all acoustic-level dynamic pressures. These bench tests additionally demonstrate the transducer’s ability to operate reliably when exposed to the harsh, high temperature environment (up to 500°C) within a gas turbine [8–10].

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In