Full Content is available to subscribers

Subscribe/Learn More  >

Electronic Structure and Contact Resistance at the Interface Between Carbon Nanotubes and Copper Pad

[+] Author Affiliations
Feng Gao, Jianmin Qu

Georgia Institute of Technology, Atlanta, GA

Matthew Yao

Rockwell Collins Inc., Cedar Rapids, IA

Paper No. InterPACK2009-89099, pp. 543-547; 5 pages
  • ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability
  • ASME 2009 InterPACK Conference, Volume 1
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-4359-8 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


Due to their unique and superior mechanical and electrical properties, carbon nanotubes (CNTs) are a promising candidate as electrical interconnects in nanoscale electronics. A key element in using CNT as electrical interconnects is the full understanding of the mechanical and electrical behavior of the interface between the CNT and copper (Cu) pad. The objective of this paper is to study the electronic structure and the electrical contact resistance at the interface between the open end of a single wall CNT and a Cu pad. To accomplish this, simulation cell consisting of an open-end single wall CNT with each end connected to a Cu electrode was created. The Cu/CNT/Cu system is fully relaxed first before a potential bias is prescribed between the Cu electrodes. The first-principle quantum mechanical density functional and non-equilibrium Green’s function (NEGF) approaches are adopted to compute the transport coefficient, while the current-voltage (I-V) relation is then extracted by invoking the Landauer-Buttiker formalism. The average density of state (DOS) and local density of states (LDOS) are also calculated to obtain the electron energy distribution around Fermi level point. Our simulation results show that electrons are conducted through the Cu/CNT/Cu system. In the low voltage bias regime (0.0∼0.1 V), I-V relationship is found to be linear. At higher voltage (> 2.0 V), the I-V relationship is nonlinear. Our results also show that the electrical contact resistance at the CNT/Cu interface is ∼3.6 kΩ at 0.1 V, and ∼4.8 kΩ at 2.0 V. These results indicate that for open-end CNTs, the contact resistance at the CNT/Cu interface is at least comparable to that of solder/Cu interface.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In