Full Content is available to subscribers

Subscribe/Learn More  >

An Investigation Into the Penetration of Phase Change Material in Carbon Foam for Transient Thermal Management

[+] Author Affiliations
Omar Sanusi, Randy D. Weinstein, Amy S. Fleischer

Villanova University, Villanova, PA

Paper No. InterPACK2009-89070, pp. 529-533; 5 pages
  • ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability
  • ASME 2009 InterPACK Conference, Volume 1
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-4359-8 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


Phase Change Materials (PCMs) are used for thermal management and are ideal for cyclic operations due to their high capacity to store heat. Most PCMs do not exhibit sufficient conductivity to be effective at larger sizes. Enhancing conductivity can be done in a number of ways including carbon foam. It is not widely known how well PCMs penetrate inside the carbon foam structure. Initial research suggests that the carbon foam-PCM matrix acts more as a conductor than a thermal storage device. Through the use microscopy, we will examine how the well the PCM penetrates into the carbon foam. We will also use experimental data comparing carbon foam enhanced modules to pure PCM modules. A volume displacement test will also be used to determine the quantity of PCM that enters into the carbon foam structure. This knowledge will allow better design of enhanced PCM modules and will determine if carbon foam is indeed a viable conduction enhancer for PCM thermal management.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In