Full Content is available to subscribers

Subscribe/Learn More  >

Mechanistic Model for Aging Influenced Steady State Flow Behavior of Sn3.8Ag0.7Cu Solder Alloys

[+] Author Affiliations
K. Mysore, S. Chavali, D. Chan, G. Subbarayan

Purdue University, West Lafayette, IN

I. Dutta

Washington State University, Pullman, WA

V. Gupta, D. Edwards

Texas Instruments, Dallas, TX

Paper No. InterPACK2009-89401, pp. 443-450; 8 pages
  • ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability
  • ASME 2009 InterPACK Conference, Volume 1
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-4359-8 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


Sn3.8Ag0.7 Cu solder alloys age even at ambient temperatures. This significantly affects both microstructure and behavior of these alloys. In this work, aging influences on both are addressed. In particular, we discuss (a) honey comb type microstructure patterns in unaged samples and their subsequent evolution into a coarsened random microstructure at prolonged aging durations (b) aging effects on primary, secondary creep and on a range of applied loads and test temperatures through double lap shear experiments; the results show an increased tendency of aged solders to flow (c) a modified power law creep-plasticity model to predict aging effects on behavior. Possible mechanisms that result in the above behavior are also discussed; they motivate the mechanistic basis for the developed aging-informed behavior model, (d) procedures to compare alloys in terms of aging effects. Steady state creep strains, monotonic plastic strains and unified creep-plasticity theory are also discussed. Aging temperatures of −10 °C, 25°C, 75°C and 125°C, and aging times of 15, 30, 60 and 90 days (at each aging temperature) were selected as different levels of factors in a statistically designed experiment to study aging effects. Test specimens were selected with due pre-test considerations to joint-geometry, associated stress heterogeneity and joint-microstructures.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In