0

Full Content is available to subscribers

Subscribe/Learn More  >

In-Line Evaluation Method of the Intrinsic Stress of Thin Films Used for Transistor Structures

[+] Author Affiliations
Hiroki Kishi, Takuya Sasaki, Nobuki Ueta, Ken Suzuki, Hideo Miura

Tohoku University, Sendai, Miyagi, Japan

Paper No. InterPACK2009-89145, pp. 239-245; 7 pages
doi:10.1115/InterPACK2009-89145
From:
  • ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability
  • ASME 2009 InterPACK Conference, Volume 1
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 978-0-7918-4359-8 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

Both thermal and intrinsic stresses that occur during thin-film processing and assembly processes dominate the final residual stress in thin film electronic devices. Since the residual stress causes the shift of electronic functions of dielectric and semiconductor materials, these shifts sometimes degrade their performance and reliability. Therefore, it is very important to measure and control the residual stress in thin-film-applied products. In this study, the changes of the electronic performance of MOS transistors by mechanical stress were measured by applying a four-point bending method. The stress sensitivity of the transconductance of NMOS transistors increased from about 1%/100-MPa to about 15%/100-MPa by decreasing the gate length of the transistors from 400 nm to 150 nm. One of the estimated important factors which dominated this increase was attributed to the interference of stress concentration fields occurred at the edges of gate-electrodes. The change of the residual stress in a transistor structure caused by deposition of thin films was analyzed by applying a finite element method (FEM). The estimated change was validated by experiment using originally developed stress sensing chips. The estimated change of the stress due to deposition of gate electrode tungsten film was about 25MPa. The measured average stress was about 20MPa and it agreed well with the estimated value. In addition, the change of the residual stress caused by the interference of the stress concentration fields between two gate-electrodes was validated by applying this stress sensing chip. The measured change of the stress caused by making fine slits by focused ion beam was about 70MPa and it agreed well with the estimated value of about 60MPa. It was confirmed, therefore, that both the thin film process-induced stress and the assembly-induced stress change the final residual stress in a transistor structure and the change can be evaluated by our stress-sensing chip quantitatively.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In