0

Full Content is available to subscribers

Subscribe/Learn More  >

Mixture-Forced Flame Transfer Function Measurements and Mechanisms in a Single-Nozzle Combustor at Elevated Pressure

[+] Author Affiliations
Nick Bunce, Jong Guen Lee, Bryan D. Quay, Domenic A. Santavicca

The Pennsylvania State University, University Park, PA

Paper No. GT2011-46744, pp. 1317-1326; 10 pages
doi:10.1115/GT2011-46744
From:
  • ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
  • Volume 2: Combustion, Fuels and Emissions, Parts A and B
  • Vancouver, British Columbia, Canada, June 6–10, 2011
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5462-4
  • Copyright © 2011 by ASME

abstract

The mixture-forced flame transfer function of a lean fully premixed single-nozzle research combustor operating on natural gas is determined experimentally at combustor pressures from 1 to 4 atm. Measurements are made over a range of inlet temperatures (100–300°C), mean velocities (25–35 m/s), and equivalence ratios (0.5–0.75). A rotating siren device, located upstream of the nozzle, is used to modulate the flow rate of the premixed fuel-air mixture. The amplitude and phase of the resultant velocity fluctuation are measured near the exit of the nozzle using the two-microphone method. The measured normalized velocity fluctuation serves as the input to the flame transfer function. In this study, the amplitude of the normalized velocity fluctuation is fixed at 5% and the modulation frequency is varied from 100 to 500 Hz. The output of the flame transfer function is the normalized global heat release fluctuation, which is measured using a photomultiplier tube and interference filter which captures the CH* chemiluminescence from the entire flame. In addition, two-dimensional CH* chemiluminescence images are taken for both forced and unforced flames. Forced flame images are phase-synchronized with the velocity fluctuation. The flame transfer functions for all of the operating conditions tested exhibit similar behavior. At low frequencies, the gain is initially greater than one, but then decreases as the frequency increases. After reaching a minimum, the gain increases with increasing frequency to a second peak and then again decreases. At certain operating conditions, the gain exhibits a second minimum. At frequencies corresponding to the minima in gain the phase curve exhibits inflection points. Regions of maximum and minimum gain are explained in terms of the constructive and destructive interference of vorticity fluctuations generated in the inner and outer shear layers. Phase-synchronized images are analyzed to isolate the fluctuating component of heat release. At frequencies where the gain is amplified, this analysis shows that the heat release fluctuations caused by the vorticity fluctuations generated in the inner and outer shear layers are in phase. While when the gain is at its minimum value, the heat release fluctuations are out of phase and therefore destructively interfere.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In