0

Full Content is available to subscribers

Subscribe/Learn More  >

An Improved Core Reaction Mechanism for Saturated C0–C4 Fuels

[+] Author Affiliations
Chitralkumar V. Naik, Karthik V. Puduppakkam, Ellen Meeks

Reaction Design, San Diego, CA

Paper No. GT2011-46705, pp. 1301-1315; 15 pages
doi:10.1115/GT2011-46705
From:
  • ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
  • Volume 2: Combustion, Fuels and Emissions, Parts A and B
  • Vancouver, British Columbia, Canada, June 6–10, 2011
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5462-4
  • Copyright © 2011 by ASME

abstract

Accurate chemistry models are required to predict the combustion behavior of different fuels, such as synthetic gaseous fuels and liquid jet fuels. A detailed reaction mechanism contains chemistry for all the molecular components in the fuel or its surrogates. Validation studies that compare model predictions with the data from fundamental combustion experiments under well defined conditions. Such fundamental experiments are least affected by the effect of transport on chemistry. Therefore they are the most reliable means for determining a reaction mechanism’s predictive capabilities. Following extensive validation studies and analysis of detailed reaction mechanisms for a wide range of hydrocarbon components reported in our previously published work [1–5], we identified some common issues in the predictive nature of the mechanisms that are associated with inadequacies of the core (C0 –C4 ) mechanism. For example predictions of laminar flame speeds and autoignition delay times for several fuels were inaccurate beyond the level of uncertainty in the data. This core mechanism is shared by all of the mechanisms for the larger hydrocarbon components. Unlike the reaction paths for larger hydrocarbon fuels, however, reaction paths for the core chemistry do not follow prescribed reaction rate-rules. In this work, we revisit our core reaction mechanism for saturated C0 –C4 fuels, with the goal of improving predictions for the widest range of fundamental experiments as possible. To evaluate and validate the mechanism improvements, we performed a broad set of simulations of fundamental experiments. These experiments include measurements of ignition delay, flame speed and extinction strain rate, as well as species composition in stirred reactors, flames and flow reactors. The range of conditions covers low to high temperatures, very lean to very rich fuel-air ratios, and low to high pressures. Our core reaction mechanism contains thermochemical parameters derived from a wide variety of sources, including experimental measurements, ab initio calculations, estimation methods and systematic optimization studies. Each technique has its uncertainties and potential inaccuracies. Using a systematic approach that includes sensitivity analysis, reaction-path analysis, consideration of recent literature studies, and an attention to data consistency, we have identified key updates required for the core mechanism. These updates resulted in accurate predictions for various saturated fuels when compared to the data over a broad range of conditions. All reaction rate constants and species thermodynamics and transport parameters remain within known uncertainties and within physically reasonable bounds. Unlike most mechanisms in the literature, the mechanism developed in this work is self-consistent and contains chemistry of all saturated C0 –C4 fuels.

Copyright © 2011 by ASME
Topics: Fuels , Mechanisms

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In