Full Content is available to subscribers

Subscribe/Learn More  >

Liquid Jet Impingement Without and With Heat Transfer

[+] Author Affiliations
F. A. Jafar, G. R. Thorpe, Ö. F. Turan

Victoria University, Melbourne, VIC, Australia

Paper No. HT2009-88357, pp. 843-852; 10 pages
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 2: Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Computational Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4357-4 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


Equipment used to cool horticultural produce often involves three-phase porous media. The flow field and heat transfer processes that occur in such equipment are generally quantified by means of empirical relationships amongst dimensionless groups. This work represents a first step towards the goal of harnessing the power of computational fluid dynamics (CFD) to better understand the heat transfer process that occur in beds of irrigated horticultural produce. The primary objective of the present study is to use numerical predictions towards reducing energy and cooling water requirement in cooling horticultural produce. In this paper, flow and heat transfer predictions are presented of a single slot liquid jet on flat and curved surfaces using a CFD code (FLUENT) for 2-D configurations. The effects of Reynolds number, nozzle to plate spacing, nozzle width and target surface configuration have been studied. Reynolds numbers of 250, 500, 700, 1800 and 1900 are studied where the liquid medium is water. Here, the Reynolds number is defined in terms of the hydraulic nozzle diameter, inlet jet velocity and fluid kinematic viscosity. The results show that Reynolds numbers, nozzle to plate spacing and nozzle width have a significant effect on the flow filed and heat transfer characteristics; whereas the target surface configuration at stagnation area has no substantial impact. The use of a numerical tool has enabled detailed investigation of these characteristics, which have not been available in the literature previously.

Copyright © 2009 by ASME
Topics: Heat transfer



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In