0

Full Content is available to subscribers

Subscribe/Learn More  >

Toward the Detailed Simulation of the Heat Transfer Processes in Unsaturated Porous Media

[+] Author Affiliations
F. A. Jafar, G. R. Thorpe, Ö. F. Turan

Victoria University, Melbourne, VIC, Australia

Paper No. HT2009-88355, pp. 833-842; 10 pages
doi:10.1115/HT2009-88355
From:
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 2: Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Computational Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4357-4 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

Trickle bed chemical reactors and equipment used to cool horticultural produce usually involve three phase porous media. The fluid dynamics and heat transfer processes that occur in such equipment are generally quantified by means of empirical relationships between dimensionless groups. The research reported in this paper is motivated by the possibility of using detailed numerical simulations of the phenomena that occur in beds of irrigated porous media to obviate the need for empirical correlations. Numerical predictions are obtained using a CFD code (FLUENT) for 2-D configurations of three cylinders. Local and mean heat transfer coefficients around these non-contacting horizontal cylinders are calculated numerically. The present results compare well with those available in the literature. The numerical results provide an insight into the cooling mechanisms within beds of unsaturated porous media.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In