Full Content is available to subscribers

Subscribe/Learn More  >

Results on Attenuation of Neutron Embrittlement Effects

[+] Author Affiliations
Milan Brumovský, Miloš Kytka

Nuclear Research Institute, Řež, Czech Republic

William Server

ATI Consulting, Pinehurst, NC

Naoki Soneda

CRIEPI, Tokyo, Japan

Jack Spanner

Electric Power Research Institute, Charlotte, NC

Paper No. ICONE16-48710, pp. 671-678; 8 pages
  • 16th International Conference on Nuclear Engineering
  • Volume 1: Plant Operations, Maintenance, Installations and Life Cycle; Component Reliability and Materials Issues; Advanced Applications of Nuclear Technology; Codes, Standards, Licensing and Regulatory Issues
  • Orlando, Florida, USA, May 11–15, 2008
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4814-0 | eISBN: 0-7918-3820-X
  • Copyright © 2008 by ASME


A carefully designed irradiation experiment was conducted in which a 180-mm thick reactor pressure vessel (RPV) wall has been simulated using eighteen 10-mm slices of some key RPV steels and irradiated under test reactor conditions to investigate the through wall attenuation of neutron embrittlement. Results from two of the irradiated materials (a low copper content plate and a high copper content Linde 80 flux weld) were reported in 2006. Another RPV plate, the international reference steel, JRQ, was also extensively irradiated in the simulated RPV wall. Comparisons of predicted attenuation changes in toughness properties using measured Charpy V-notch results are presented for the JRQ steel and compared to the results from the low copper content plate and the high copper content Linde 80 weld metal. Also, Charpy V-notch and Master Curve fracture toughness test results are compared for the low copper plate and the high copper weld. Predictions are made of through-wall attenuation following the practice defined in ASTM E 900-02 and Regulatory Guide 1.99, Revision 2, in which the attenuation of high energy neutron fluence (E > 1 MeV) is projected based upon an approximate displacements per atom (dpa) change through the wall thickness.. The resultant degree of material damage using this dpa-based fluence change is estimated using the ASTM E 900–02 embrittlement correlation model and compared to the experimental data.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In