0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Low-Activation Design Method for Reduction of Radioactive Waste Below Clearance Level

[+] Author Affiliations
Ken-Ichi Kimura, Masaharu Kinno

Fujita Corporation, Tomakomai, Hokkaido, Japan

Akira Hasegawa

Tohoku University, Sendai, Miyagi, Japan

Katsumi Hayashi

Hitachi GE Nuclear Energy, Ltd., Ibaraki, Japan

Mikio Uematsu

Toshiba Corporation, Japan

Tomohiro Ogata

Mitsubishi Heavy Industries, Japan

Takao Tanosaki

Taiheiyo Cement Corporation, Tokyo, Japan

Ryoetsu Yoshino

Denki Kagaku Kogyo K. K., Tokyo, Japan

Mituru Sato

Nippon Steel Technoresearch Corp., Higashi, Ibaraki, Japan

Minoru Saito

Tohoku Electric Power Co., Inc., Sendai, Japan

Paper No. ICONE16-48484, pp. 617-626; 10 pages
doi:10.1115/ICONE16-48484
From:
  • 16th International Conference on Nuclear Engineering
  • Volume 1: Plant Operations, Maintenance, Installations and Life Cycle; Component Reliability and Materials Issues; Advanced Applications of Nuclear Technology; Codes, Standards, Licensing and Regulatory Issues
  • Orlando, Florida, USA, May 11–15, 2008
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4814-0 | eISBN: 0-7918-3820-X
  • Copyright © 2008 by ASME

abstract

Design methodology for reinforced concrete of nuclear power plants to reduce radioactive wastes in decommission phase has been developed. To realize this purpose, (1) development of raw materials database of cements, aggregates and steel bars on concentration of radioactive target elements, (2) trial production of low activation cements and steel bars based on the material database developed in (1), and (3) development of tools for estimation and prediction of the amount of radioactive elements in reactor shielding walls have been carried out. Radioactive analysis showed that Co and Eu were the major target elements which decide the radioactivity level of reinforced concrete from wide survey of raw materials for concrete (typically aggregates and cements). Material database for the contents of Co and Eu was developed based on the chemical analysis and radioactivation analysis. Upon the above survey and execution expreiment of concrete, six types of low-activation concrete are proposed for various radioactive portion in the plant. These concrete have a 1/10 – 1/300 rasioactivity compare to the ordinary concrete, which are assumed the concrete with Andesite aggregate and ordinary Portland cement. Baed on the above data base, it was clarified that the low activation cement would be successfully manufactured by adequate selection of raw materials. The prospect to produce the low-heat portland cement which would have a 1/3 radioactivity in comparison with conventioanl cements obtained by means of selection of limestone and natural gypsum. An attempte was carried out to produece low activation heavy-mortar which would have radioactivity below the clearance level when using at the radiation shielding wall of BWR. Characterization and optimization of consturction conditions with new additives have also been carried out. These two new raw materials for low-activation concrete are conducted in pre-manufacture size, and over the laboratry level. Boron added low-activation concrete are also carried out as extreamly high performance low-activation concrete. It was claryfied that the accurcy of calculation results of the radioactivity evaluation was very high compared to available benchmark calculation for the JPDR and commercial light water reactor. The specification of the mapping system for judging the activation classification was also developed by using the general-purpose radio activation calculation tool. This work is supported by a grant-in-aid of Innovative and Viable Nuclear Technology (IVNET) development project of Ministry of Economy, Trade and Industry, Japan.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In