0

Full Content is available to subscribers

Subscribe/Learn More  >

Autoregressive Multivariate Analysis of BWR Bistable Flow

[+] Author Affiliations
Rogelio Castillo-Durán, Javier Ortiz-Villafuerte

Instituto Nacional de Investigaciones Nucleares, La Marquesa, México, México

Raymundo Gómez-Herrera, Gabriel Calleros-Micheland

Comisión Federal de Electricidad, Alto Lucero, Veracruz, México

Paper No. ICONE16-48730, pp. 253-259; 7 pages
doi:10.1115/ICONE16-48730
From:
  • 16th International Conference on Nuclear Engineering
  • Volume 1: Plant Operations, Maintenance, Installations and Life Cycle; Component Reliability and Materials Issues; Advanced Applications of Nuclear Technology; Codes, Standards, Licensing and Regulatory Issues
  • Orlando, Florida, USA, May 11–15, 2008
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4814-0 | eISBN: 0-7918-3820-X
  • Copyright © 2008 by ASME

abstract

Bi-stable flow patterns can induce flow oscillations possibly leading to power fluctuations. In other cases, bi-stable flow can generate loads on components, so that structural stresses may become a potential cause of failure. This type of flow occurs in BWRs at different operation conditions, so there is no an absolute methodology for detection and prediction of such phenomenon. In this work, a multivariate autoregressive (MAR) analysis is performed to different signals related to a bi-stable flow event that occurred in one of the BWR Units at the Laguna Verde Nuclear Power Plant. The signal analysis was performed with the home-developed NOISE computer program, which, among several other applications, computes the autoregressive coefficients which contain the information of the dynamics of the signal, and that later are used to determine the relative power contribution (RPC) ratio, which in turn allows establishing the influence of the different signals on each other. From the signal analysis, among the important results obtained, it was found that no new frequencies appeared during the event. Also, it was determined through the Relative Power Contribution ratios that the most probable cause of reactor power change was the flow variation in the recirculation flow of loop B. Maximum variations (both above and below) from the initial average reactor power were 0.5%, so the bi-stable flow impact was of no safety concern.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In