Full Content is available to subscribers

Subscribe/Learn More  >

Evaluation of Coupling Desalination With PWR Nuclear Power Plant With Pinch, Exergy and Thermoeconomic Analysis

[+] Author Affiliations
Mohammad Hasan Khoshgoftar Manesh, Majid Amidpour, Ali Farhadi, Gholam Reza Salehi

K. N. Toosi University of Technology, Tehran, Iran

Paper No. ICONE16-48441, pp. 157-170; 14 pages
  • 16th International Conference on Nuclear Engineering
  • Volume 1: Plant Operations, Maintenance, Installations and Life Cycle; Component Reliability and Materials Issues; Advanced Applications of Nuclear Technology; Codes, Standards, Licensing and Regulatory Issues
  • Orlando, Florida, USA, May 11–15, 2008
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 0-7918-4814-0 | eISBN: 0-7918-3820-X
  • Copyright © 2008 by ASME


Exergy concept combined with pinch based approach is used for studying the optimal integration of energy conversion systems. The analysis first considers the representation of the hot and cold composite curves of the process and defines the energy and the exergy requirements. Strength of pinch analysis is that system information can be represented using simple diagrams and thus targets for the system under consideration can be readily obtained prior to design. In contrast, the power of exergy analysis is that it can identify the major causes of thermodynamic imperfection of thermal and chemical processes and thus promising modifications can be determined effectively. By combining the strengths of both methods, the proposed method can represent a whole system, including individual units on one diagram, which helps to screen the promising modifications quickly for improving a base case design. This method is Energy Level Analysis. We have developed energy level analysis to energy destruction level as a strategy for energy integration that uses power plant simulation tools to define the interaction between the various subsystems in the plant and a graphical technique to help the engineer interpret the results of the simulation with physical insights that point towards exploring possible integration schemes to increase energy efficiency. In this paper, 1000 MW PWR nuclear steam power plant is considered. Simulation of power plant is performed in STEAM PRO software. Computer code is developed to exergy calculation and generation of exergy destruction level representation. In addition, thermoeconomic analysis is performed to generation of other new graphical representation related to exergy destruction that helps us to consider cost rate of destruction in each component.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In