Full Content is available to subscribers

Subscribe/Learn More  >

Evaporators for High Temperature Lift Vapor Compression Loop for Space Applications

[+] Author Affiliations
Tadej Semenic, Xudong Tang

Advanced Cooling Technologies, Inc., Lancaster, PA

Paper No. HT2009-88205, pp. 475-481; 7 pages
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 2: Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Computational Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4357-4 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


An Advanced Vapor Compression Loop (AVCL) for high temperature lift for heat rejection to hot lunar surface during lunar daytime was developed. The loop consists of an evaporator, a compressor, a condenser, and an electronic expansion valve. Different types of evaporators were evaluated in this study: a circular tube evaporator, a circular tube evaporator with a twisted tape, a circular tube evaporator with a wick, and a circular tube evaporator with a wick and a twisted tape. The evaporators were tested with two different compressors. The first was a 0.5hp oil-less compressor and the second was a 5.3hp compressor that used oil as lubricant. A heat exchanger (recuperator) was used to subcool the high pressure liquid and to superheat the low pressure vapor. Tests were performed with and without the recuperator. Vapor superheat during the tests was controlled with an electronic expansion valve controller. The working fluid was R134a. The results show that the heat source-to-working fluid thermal resistance of the circular tube evaporator with the wick and the twisted tape was one-third of that of the circular tube evaporator. The recuperator was able to decrease the vapor quality at the evaporator inlet and increase the vapor superheat at the compressor inlet. The evaporators without wicks were able to operate at a heat flux of 5.7W/cm2 with the recuperator and vapor superheat set at 5°C. Evaporators with wicks reached dryout at lower heat fluxes when maintaining superheat at 5°C. However, the wicked evaporators reached a heat flux of 7.6W/cm2 when decreasing superheat below 5°C. A temperature lift of 70°C was achieved with the 5.3hp compressor.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In