Full Content is available to subscribers

Subscribe/Learn More  >

Air Jet Impingement Heat Transfer at Low Nozzle-to-Plate Spacings Under a Fixed Pumping Power Condition

[+] Author Affiliations
Kyo Sung Choo, Sung Jin Kim

KAIST, Daejeon, Republic of Korea

Paper No. HT2009-88189, pp. 459-465; 7 pages
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 2: Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Computational Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4357-4 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


Heat transfer characteristics of an impinging air jet are experimentally investigated under a fixed pumping power condition. The effects of dimensionless pumping power on the Nusselt number are considered. The focus is on cases where the nozzle-to-plate spacing is equal to or less than one nozzle diameter. The results show that the Nusselt number is independent of the nozzle-to-plate spacing under fixed pumping power conditions, while the Nusselt number increases with decreasing the nozzle-to-plate spacing under fixed flow rate conditions. Based on the experimental results, new correlations for the stagnation and average Nusselt numbers of the impinging jet are developed as a function of the pumping power alone.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In