Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of the Effective Thermal Diffusivity of Discretely Inhomogeneous Media

[+] Author Affiliations
Daniel W. Mackowski, Mario Ramos

Auburn University, Auburn, AL

Paper No. HT2009-88508, pp. 331-338; 8 pages
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 2: Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Computational Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4357-4 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


An extended definition of the effective thermal diffusivity is posed via an analogy to acoustic and EM wave propagation in discretely inhomogeneous media. Specifically, the propagation of a periodic, plane thermal wave of frequency ω, through an inhomogeneous medium consisting of spherical particles embedded in a continuous matrix, is theoretically examined. An exact solution for the time–harmonic conduction equation, for the multiple sphere system, is developed by use of the scalar wave harmonic functions and the addition theorem for the harmonics. An effective medium model, which is based on the Quasi–Crystalline approximation (QCA) for acoustic and EM wave propagation, is developed, and a formulation for the frequency–dependent effective thermal diffusivity is derived. In the limit of x = Rω/α0→0, where R is the sphere radius and α0 the matrix thermal diffusivity, it is shown that formulation reduces to that derived from a static model.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In