0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis on the Effects of Transversal Ribs on Forced Convection in Channels

[+] Author Affiliations
O. Manca, S. Nardini, D. Ricci, S. Tamburrino

Seconda Università degli Studi di Napoli, Aversa, Italy

Paper No. HT2009-88445, pp. 279-286; 8 pages
doi:10.1115/HT2009-88445
From:
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 2: Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Computational Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4357-4 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

Heat transfer in fluids is very important in many industrial heating and cooling equipments. Convective heat transfer can be enhanced passively by changing flow geometry, boundary conditions or by increasing thermal conductivity of the fluid. Another possibility for increasing heat transfer with gas is to employ extended surfaces. When a fluid flows in a channel, transversal ribs can be used as fins and break the laminar sublayer creating local wall turbulence. However, as a consequence the presence of the ribs can significantly augment pressure drops. In this paper a numerical investigation is carried out on forced convection in channels heated by a constant heat flux. Also conductive effects are taken into account. The fluid is air and properties are assumed as function of temperature. Ribs of the same material of the channel walls are introduced and several arrangements are analyzed. The investigation is accomplished by means of the commercial code Fluent. A turbulence model is used. Results are presented in terms of temperature and velocity fields, average heat transfer coefficients, friction factor profiles and pressure drops. The aim of this study is to find arrangement of ribs such to give high heat transfer coefficients and low pressure drops. The maximum Nusselt number and friction factor have been detected for dimensionless pitches equal, respectively, to 12 and 10.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In