0

Full Content is available to subscribers

Subscribe/Learn More  >

3D CFD Simulations of Hydrogen Fuelled Spark Ignition Engine

[+] Author Affiliations
Dinesh D. Adgulkar, N. V. Deshpande, S. B. Thombre, I. K. Chopde

Visvesvaraya National Institute of Technology, Nagpur, India

Paper No. ICES2008-1649, pp. 225-232; 8 pages
doi:10.1115/ICES2008-1649
From:
  • ASME 2008 Internal Combustion Engine Division Spring Technical Conference
  • ASME 2008 Internal Combustion Engine Division Spring Technical Conference
  • Chicago, Illinois, USA, April 27–30, 2008
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 0-7918-4813-2 | eISBN: 0-7918-3815-3
  • Copyright © 2008 by ASME

abstract

By supporting hydrogen as an alternative fuel to the conventional fuel i.e. gasoline, new era of renewable and carbon neutral energy resources can be introduced. Hence, development of hydrogen fuelled internal combustion engine for improved power density and less emission of NOx has become today’s need and researchers are continuously extending their efforts in the improvement of hydrogen fuelled internal combustion engine. In this work, three dimensional CFD simulations were performed using CFD code (AVL FIRE) for premixed combustion of hydrogen. The simplified 3D geometry of engine with single valve i.e. inlet valve was considered for the simulation. Various combustion models for spark ignition for hydrogen i.e. Eddy Breakup model, Turbulent Flame Speed Closure Combustion Model, Coherent Flame model, Probability Density Function model were tested and validated with available simulation results. Results obtained in simulation indicate that the properties of hydrogen i.e. high flame speed, wide flammability limit, and high ignition temperature are among the main influencing factors for hydrogen combustion being different than that of gasoline. Different parameters i.e. spark advance angle (TDC to 40° before TDC in the step of 5°), rotational speed (1200 to 3000 rpm in the step of 300 rpm), equivalence ratio (0.5 to 1.2 in the step of 0.1), and compression ratio (8, 9 and 10) were used to simulate the combustion of hydrogen in spark ignition engine and to investigate their effects on the engine performance, which is in terms of pressure distribution, temperature distribution, species mass fraction, reaction progress variable and rate of heat release for complete cycle. The results of power output for hydrogen were also compared with that of gasoline. It has been observed that power output for hydrogen is almost 12–15% less than that of gasoline.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In