Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Compressed Air Hybrid Operation for a Heavy Duty Diesel Engine

[+] Author Affiliations
Xiaoyong Wang, Tsu-Chin Tsao

University of California at Los Angeles, Los Angeles, CA

Chun Tai, Hyungsuk Kang

Volvo Powertrain North America, Hagerstown, MD

Paul N. Blumberg


Paper No. ICES2008-1679, pp. 173-186; 14 pages
  • ASME 2008 Internal Combustion Engine Division Spring Technical Conference
  • ASME 2008 Internal Combustion Engine Division Spring Technical Conference
  • Chicago, Illinois, USA, April 27–30, 2008
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 0-7918-4813-2 | eISBN: 0-7918-3815-3
  • Copyright © 2008 by ASME


Internal combustion engines can be modified to operate regenerative braking cycles by using compressed air power. This paper presents a particular air hybridization design from among many possible configurations. The engine cycles are enabled by a highly flexible engine valvetrain, which actuates engine valves to generate desired torque with optimal efficiency. A lumped parameter model is developed first to investigate the cylinder-tank mass and energy interaction based on thermodynamic relationships and engine piston kinematics. Special consideration is given to the engine valve timing and air flow. A high fidelity, detailed model using the commercially available GT-Power software is developed for a commercial 10.8 liter heavy-duty diesel engine with a 280 liter air tank in order to capture the effects of engine friction, heat transfer, gas dynamics, etc. The model is used to develop optimal valve timing for engine control. The established engine maps are incorporated into the ADVISOR vehicle simulation package to evaluate the potential fuel economy improvement for a refuse truck under a variety of driving cycles. Depending on the particular driving cycle, the simulation has shown a potential 4% – 18% fuel economy improvement over the truck equipped with the conventional baseline diesel engine.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In