0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling Rail Flexibility Using Finite Element and Finite Segment Methods

[+] Author Affiliations
Martin B. Hamper, Ahmed A. Shabana

University of Illinois at Chicago, Chicago, IL

Antonio M. Recuero, José L. Escalona

University of Seville, Seville, Spain

Paper No. JRC2011-56106, pp. 129-140; 12 pages
doi:10.1115/JRC2011-56106
From:
  • 2011 Joint Rail Conference
  • 2011 Joint Rail Conference
  • Pueblo, Colorado, USA, March 16–18, 2011
  • ISBN: 978-0-7918-5459-4 | eISBN: 978-0-7918-3893-8
  • Copyright © 2011 by ASME

abstract

Safety requirements and optimal performance of railroad systems require the utilization of multibody System (MBS) formulations that allow for modeling flexible bodies. This investigation will present three methods suited for the study of flexible track models while conclusions about their implementations and features are made. A validated method combining Floating Frame of Reference (FFR) and Finite Element (FE) to model flexible rails is utilized for comparison. In this procedure, component mode synthesis is used to extract a number of low-frequency modes of vibration which describe the deformation of the rail. Likewise, a method that discretizes the flexible body as a finite number of rigid elements that are linked by springs and dampers is applied for railroad simulations. This method, called Finite Segment or Rigid Finite Element (FS), can in turn be combined with FFR through the extraction of mode shapes of the FS model. Convergence of the methods is analyzed. A comparison will be made between these three procedures establishing differences among them and analyzing the specific application of FS to modeling track flexibility. The three aforementioned procedures may be applied to three-dimensional track models and will be used together with three-dimensional wheel/rail contact formulation that predicts contact points online and allows for updating the creepages to account for the rail movements and deformations. Several comparisons and conclusions will be drawn in view of the results obtained in this investigation.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In