Full Content is available to subscribers

Subscribe/Learn More  >

Broken Rail Prediction and Detection Using Wavelets and Artificial Neural Networks

[+] Author Affiliations
Brad M. Hopkins, Saied Taheri

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. JRC2011-56026, pp. 77-84; 8 pages
  • 2011 Joint Rail Conference
  • 2011 Joint Rail Conference
  • Pueblo, Colorado, USA, March 16–18, 2011
  • ISBN: 978-0-7918-5459-4 | eISBN: 978-0-7918-3893-8
  • Copyright © 2011 by ASME


Current track health monitoring requires time consuming use of railway monitoring vehicles. This paper presents a rail defect detection and classification algorithm that could potentially be used with bogie side frame vertical acceleration data from a data acquisition system located onboard a train car during daily operation. The algorithm uses wavelets to process the vertical acceleration data and detect irregularities in the signal. Wavelets have proven themselves to be useful in event detection and other applications where localization is needed in both the time and frequency domains. Traditional signal processing methods may use the Fourier transform which is limited to localization only in the frequency domain. Wavelets provide a solution for recognizing rail defects and determining their location. The wavelet-processed data is fed into an artificial neural network for defect classification. Neural networks can be a powerful tool in pattern recognition and classification because of their ability to be taught. The network in this algorithm has been trained to recognize impending breaks and breaks in a rail from the original vertical acceleration signal and the first four scales of the wavelet transformed signal. This paper presents an offline analysis of a set of collected data using the proposed defect detection and classification algorithm.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In