0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Conductivity of Cubic and Hexagonal Mesoporous Silica Thin Films

[+] Author Affiliations
Thomas Coquil, Neal Hutchinson, Laurent Pilon, Erik Richman, Sarah Tolbert

University of California, Los Angeles, Los Angeles, CA

Paper No. HT2009-88256, pp. 169-178; 10 pages
doi:10.1115/HT2009-88256
From:
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 2: Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Computational Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4357-4 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

This paper reports the cross-plane thermal conductivity of highly ordered cubic and hexagonal templated mesoporous amorphous silica thin films synthesized by evaporation-induced self-assembly process. Cubic and hexagonal films featured spherical and cylindrical pores and average porosity of 25% and 45%, respectively. The pore diameter ranged from 3 to 18 nm and film thickness from 80 to 540 nm while the average wall thickness varied from 3 to 12 nm. The thermal conductivity was measured at room temperature using the 3ω method. The experimental setup and the associated analysis were validated by comparing the thermal conductivity measurements with data reported in the literature for the silicon substrate and for high quality thermal oxide thin films with thickness ranging from 100 to 500 nm. The cross-plane thermal conductivity of the synthesized mesoporous silica thin films does not show strong dependence on pore size, wall thickness, or film thickness. This is due to the fact that heat is mainly carried by very localized non propagating vibrational modes. The average thermal conductivity for the cubic mesoporous silica films was 0.30 ± 0.02 W/mK, while it was 0.20 ± 0.01 W/mK for the hexagonal films. This corresponds to a reduction of 79% and 86% from bulk fused silica at room temperature.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In