Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Conduction Mechanism in Nanofluids, Solid Composites and Liquid Mixtures

[+] Author Affiliations
Jacob Eapen

North Carolina State University, Raleigh, NC

Paper No. HT2009-88236, pp. 163-167; 5 pages
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 2: Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Computational Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4357-4 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


Analysis of Maxwell’s mean-field (or effective-medium) theory reveals two limiting bounds — an upper and a lower bound — for thermal conductivity in binary composite systems. The lower and the upper bounds correspond to continuous conduction paths through the base medium and the dispersed medium, respectively (assuming that the dispersed medium has a higher thermal conductivity). Extensive comparisons to experimental data show that most of the reported thermal conductivity data on nanofluids, solid composites and liquid mixtures fall between the limiting Maxwell bounds. For a nanofluid, this indicates that the effective thermal conductivity is largely dependent on the geometrical configuration and the connectivity of the dispersed nanoparticle phase. The lower bound corresponds to a colloidal configuration of well-dispersed nanoparticles with the continuous conduction path provided by the base medium while the upper bound represents a linear, fractal-like nanoparticle arrangement with the continuous conduction path provided by the nanoparticles.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In