Full Content is available to subscribers

Subscribe/Learn More  >

Total Temperature Measurements of Gaseous Flow at Micro-Tube Outlet

[+] Author Affiliations
Takaharu Yamamoto, Chungpyo Hong, Koichi Suzuki

Tokyo University of Science, Noda, Chiba, Japan

Yutaka Asako

Tokyo Metropolitan University, Hachioji, Tokyo, Japan

Paper No. HT2009-88109, pp. 131-137; 7 pages
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 2: Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Computational Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4357-4 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME


This paper presents experimental results on heat transfer characteristics of gaseous flow in a micro-tube with constant wall temperature. The experiment was performed for nitrogen gas flow through a micro-tube with 166 micro meters in diameter and 50mm in length. The wall temperature was maintained at 305K, 310K, 330K and 350K by circulating water around the micro-tube, respectively. The stagnation pressure is chosen in such a way that the exit Mach number ranges from 0.1 to 1.0. The outlet pressure was fixed at the atmospheric condition. The total temperature at the outlet, the inlet stagnation temperature, the mass flow rate, and the inlet pressure were measured. The numerical computations based on the Aribitary - Langrangian - Eulerian (ALE) method were also performed for the same cases of the experiment for validation of numerical computation. The both results are in excellent agreement. The total temperatures obtained by the present study are slightly higher than those of the incompressible flow. This is due to the additional heat transfer near the micro-tube outlet caused by the temperature decrease due to the energy conversion into the kinetic energy. A quantitative correlation for the prediction of the heat transfer rate of the gaseous flow in a micro-tube was proposed.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In