0

Full Content is available to subscribers

Subscribe/Learn More  >

Natural Convective Heat Transfer From an Inclined Isothermal Square Cylinder With an Exposed Top Surface Mounted on a Flat Adiabatic Base

[+] Author Affiliations
Abdulrahim Kalendar, Patrick H. Oosthuizen

Queen’s University, Kingston, ON, Canada

Paper No. HT2009-88094, pp. 115-122; 8 pages
doi:10.1115/HT2009-88094
From:
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 2: Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Computational Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4357-4 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

Natural convective heat transfer from an isothermal inclined cylinder with a square cross-section and which has an exposed top surface and is, in general, at an angle to the vertical has been numerically studied. The cylinder is mounted on a flat adiabatic base plate, the cylinder being normal to the base plate. The situation considered is an approximate model of that which occurs in some electrical and electronic component cooling problems. The flow has been assumed to be steady and laminar and it has been assumed that the fluid properties are constant except for the density change with temperature which gives rise to the buoyancy forces, this having been treated by using the Boussinesq approach. The solution has been obtained by numerically solving the governing equations, these equations being written in terms of dimensionless variables using the height, h, of the cylinder as the length scale and Tw TF as the temperature scale, TF being the undisturbed fluid temperature far from the cylinder and Tw being the uniform surface temperature of the cylinder. These dimensionless governing equations subject to the boundary conditions have been solved using the commercial cfd solver, FLUENT. The flow has been assumed to be symmetrical about the vertical center-plane through the cylinder. The solution has been used to derive the values of the mean Nusselt number for the cylinder, Nu. The solution has the following parameters: the Rayleigh number, Ra, the dimensionless cylinder width, i.e., the ratio of the width to the height of the heated cylinder, W = w/h, the Prandtl number, Pr, and the angle of inclination of the cylinder relative to the vertical, φ. Results have only been obtained for Pr = 0.7. Values of φ between 0° and 180° and a wide range of Ra and W have been considered. The effects of W, Ra, and φ on the mean Nusselt number, Nu, for the entire cylinder and for the mean Nusselt numbers for the various surfaces that make up the cylinder have been examined.

Copyright © 2009 by ASME
Topics: Convection , Cylinders

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In