Full Content is available to subscribers

Subscribe/Learn More  >

Waste Combustion Technology and Air Emission Control Developments by Fisia Babcock Environment

[+] Author Affiliations
Jens Sohnemann, Walter Schäfers, Armin Main

Fisia Babcock Environment (FBE) GmbH, Gummersbach, Germany

Paper No. NAWTEC19-5418, pp. 209-217; 9 pages
  • 19th Annual North American Waste-to-Energy Conference
  • 19th Annual North American Waste-to-Energy Conference
  • Lancaster, Pennsylvania, USA, May 16–18, 2011
  • ISBN: 978-0-7918-5457-0
  • Copyright © 2011 by ASME


The efforts for reducing the emissions into the atmosphere start already in the furnace and are completed by an effective flue gas cleaning system. This implies the necessity for design developments of key components for a modern EfW plant. For the core component of the firing system — the grate — Fisia Babcock Environment (FBE) is using forward moving grates as well as roller grates. The moving grate, which is used in the great majority of all our plants, has specific characteristics for providing uniform combustion and optimal burnout. These include, amongst others: - Uniform air supply by means of specific grate bar geometry. - Two grate steps in direction of waste transport for optimum burnout. - Flexible adaptation of the combustion process to the respective conditions and requirements by zone-specific air distribution and transport velocity of waste on grate. - Combustion control adapted to the specific plant for ensuring a consistent combustion process and production of energy. In addition to these features influencing the emissions the moving grate exhibits also specific characteristics regarding the mechanical aspects allowing low-maintenance and reliable operation. For optimum flue gas burnout a good oxygen distribution after leaving the combustion zone is required. For ensuring this, the injection of secondary air is designed to produce a double-swirl, developed by FBE. Final reduction of the nitrogen constituents NO and NO2 to the stipulated emission value is achieved by the SNCR process. As well in this respect, there is a great amount of experience available. Besides these measures regarding the combustion process, this paper also reports about flue gas cleaning systems. In this field the FBE CIRCUSORB® process is presented and compared with the known dry absorption process. CIRCUSORB® is a lime-based flue gas cleaning process with continuous recirculation of the moistened reaction product and simultaneous addition of fresh hydrated lime. The flue gas temperature downstream of the economizer can be selected very low and permits in this way maximized utilization of the energy. The evaporation of the moisture from the reaction product (flash evaporation) effects final cooling down of the flue gas to optimum process temperature and improves at the same time SO2 separation. This reduces the technical investment required for the flue gas cleaning process. The total of all measures taken and the robust design of all components permit economical plant operation while complying with the stipulated emission limit values.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In