0

Full Content is available to subscribers

Subscribe/Learn More  >

Monte Carlo Study of Phonon Heat Conduction in Silicon Thin Films: Role of Optical Phonons

[+] Author Affiliations
Arpit Mittal, Sandip Mazumder

The Ohio State University, Columbus, OH

Paper No. HT2009-88008, pp. 19-27; 9 pages
doi:10.1115/HT2009-88008
From:
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 2: Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Computational Heat Transfer
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4357-4 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

The Monte Carlo (MC) method has found prolific use in the solution of the Boltzmann Transport Equation (BTE) for phonons for the prediction of non-equilibrium heat conduction in crystalline thin films. This paper contributes to the state-of-the-art by performing a systematic study of the role of the various phonon modes on thermal conductivity predictions—in particular, optical phonons. A procedure to calculate scattering time-scales with the inclusion of optical phonons is described and implemented. The roles of various phonon modes are assessed. It is found that Transverse acoustic (TA) phonons are the primary carriers of energy at low temperatures. At high temperatures (T > 200K), longitudinal acoustic (LA) phonons carry more energy than TA phonons. When optical phonons are included, there is a significant change in the amount of energy carried by various phonons modes. At room temperature, optical modes are found to carry about 25% of the energy at steady state in Silicon thin films. Most importantly, inclusion of optical phonons results in better match with experimental observations for Silicon thin-film thermal conductivity.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In