0

Full Content is available to subscribers

Subscribe/Learn More  >

Forces Acting on Sessile Droplet on Inclined Surfaces

[+] Author Affiliations
S. Ravi Annapragada, Jayathi Y. Murthy, Suresh V. Garimella

Purdue University, West Lafayette, IN

Paper No. HT2009-88365, pp. 925-934; 10 pages
doi:10.1115/HT2009-88365
From:
  • ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences
  • Volume 1: Heat Transfer in Energy Systems; Thermophysical Properties; Heat Transfer Equipment; Heat Transfer in Electronic Equipment
  • San Francisco, California, USA, July 19–23, 2009
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4356-7 | eISBN: 978-0-7918-3851-8
  • Copyright © 2009 by ASME

abstract

Although many analytical, experimental and numerical studies have focused on droplet motion, the mechanics of the droplet while still in its static state, and just before motion starts, are not well understood. A study of static droplets would shed light on the threshold voltage (or critical inclination) for initiating electrically (or gravitationally) induced droplet motion. Before the droplet starts to move, the droplet shape changes such that the forces acting at the triple contact line balance the actuation forces. These contact line forces are governed by the contact angles along the contact line. The contact angle varies from an advancing angle at the leading edge to a receding angle at the trailing edge of the droplet. The present study seeks to understand and predict these forces at the triple contact line. The droplet shape, as well as the advancing and receding contact angles, is experimentally measured as a function of droplet size under the action of a gravitational force at different inclination angles. The advancing and receding contact angles are correlated with static contact angle and Bond number. A Volume of Fluid - Continuous Surface Force model with varying contact angles along the triple contact line is developed to predict the same. The model is first verified against a two-dimensional analytical solution. It is then used to simulate the shape of a sessile droplet on an incline at various angles of inclination and to determine the critical angle of inclination as a function of droplet size. Good agreement is found between experimental measurements and predictions. The contact line profile and contact area are also predicted. The contact area predictions based on a spherical-cap assumption are also compared against the numerical predictions.

Copyright © 2009 by ASME
Topics: Force

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In