Full Content is available to subscribers

Subscribe/Learn More  >

Identification of the Multiple Flying Heights in a Loading Process

[+] Author Affiliations
Shuyu Zhang

Western Digital, Fremont, CA

Mike Suk, George Tyndall

Samsung Information System America, Fremont, CA

Paper No. IJTC2008-71128, pp. 681-683; 3 pages
  • STLE/ASME 2008 International Joint Tribology Conference
  • STLE/ASME 2008 International Joint Tribology Conference
  • Miami, Florida, USA, October 20–22, 2008
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4336-9 | eISBN: 978-0-7918-3837-2
  • Copyright © 2008 by ASME


The slider of a Load/unload (LUL) drive can be loaded to a high flying stable state under certain conditions, which positions the read/write transducers much higher from the disk surface than the normal flying height (FH) and resulting in the issues in read or write. To avoid the issues caused by the high flying loading, it is necessary to find ways to recognize the existence of the high FH and eliminate it in the design stages. In this paper, we introduce a method that can identify the existences of the multiple FHs in loading process conveniently. The basic idea is to plot surfaces of air bearing forces in a domain of flying attitude, and then check if multiple FHs exist to generate the same air bearing forces that match the suspension forces. The analysis results indicate that the method is easy and efficient in identifying multiple FHs in loading process.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In